
Metapop user documentation

Soularue J.P., Arnoux L., Thöni A. and Kremer A.

April 3, 2018

Contents

1 Introduction 3
1.1 Overview . 3
1.2 License . 3
1.3 Contact . 3

2 Getting started 3
2.1 Prerequisites for installation . 3
2.2 Installation . 3
2.3 Running a simulation . 5
2.4 Compilation . 5
2.5 Input . 5

2.5.1 General structure . 5
2.5.2 Initialization modes . 5
2.5.3 Secondary files . 6
2.5.4 Syntax . 7

2.6 Output . 7
2.6.1 Raw and processed output . 7
2.6.2 Genotypes conversion . 8

2.7 Starting meta-population . 8

3 Model 10
3.1 Frame of the model . 10
3.2 Phenotypic traits . 10

3.2.1 Genomes . 10
3.2.2 From genomes to traits: phenotypic and genetic subdivisions 12
3.2.3 Heritability and allelic effects . 14

3.3 Inheritance . 16
3.4 Life cycle . 17

3.4.1 Natural selection . 17
3.4.2 Demography . 19
3.4.3 Recombination . 20
3.4.4 Gene flow . 20

1

3.4.5 Reproduction . 21
3.4.6 Mutation . 22

3.5 Landscapes . 23
3.5.1 Shape and dimensions . 23
3.5.2 Macro-environmental effect . 23
3.5.3 Natural selection . 24

4 Input 27
4.1 Overall structure . 27
4.2 Files and variables . 28

5 Output 39
5.1 Raw output . 39
5.2 Processed output . 40
5.3 Output conversion . 41

6 Appendix: configuration examples 42

2

1 Introduction

1.1 Overview

Metapop simulates the evolution of meta-populations of monoecious plants accross hetero-
geneous landscapes. Based on quantitative genetics theory, Metapop is individual-based,
genetically and spatially explicit, its structure embodies several interacting modules (Fig-
ure 1). Each simulation is parameterized through a configuration environment composed of
textual files. The evolutionary scenario defined is simulated by the model which produces
raw data. Finally, output modules process the raw data and enable the monitoring and the
analysis of evolutionary changes at the level of quantitative traits, their underlying genes or
neutral markers. Fstat and Genepop files of individual values can be generated, which allows
the user to further process the data with other packages. A comprehensive description of
the use of Metapop is given in the following parts. A synthesis text file MTP cheatsheet.txt
is available in the main directory for a quick help on basic commands.

1.2 License

Metapop is a free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License version 3. See the GNU General Public License for more
details: https://opensource.org/licenses/GPL-3.0. The program has been cautiously devel-
oped, tested and validated, however Metapop is provided without any warranty.

1.3 Contact

Questions can be sent at jean-paul.soularue@inra.fr. Please mention the word ”Metapop”
in the subject of the email.

2 Getting started

2.1 Prerequisites for installation

Metapop has been developed in C++ and Lua. It was designed and tested for Linux-like
platforms and particularly for clusters. In most cases, installation and execution on Microsoft
Windows operating systems remain possible through Cygwin libraries. Before installation, be
sure that (i) you have the permission to install the program on your system, (ii) the packages
required to compile and execute C++ are already installed, (iii) R with MCMCpack module
is installed.

2.2 Installation

First download the archive on the treepeace.fr website, section Tools. Unzip it and go into
the resulting folder. The corresponding console commands are given below:

http://www.treepeace.fr/wp-content/uploads/MTP_2_2_1.zip

3

Figure 1: Structure of Metapop.

4

unzip DEMO_MTP_1_beta.zip

cd DEMO_MTP_1_beta

Compilation of the main source code can be done with the following commands. On Linux:

./installMP.sh linux

On Windows, with Cygwin installed:

./installMP.sh posix

2.3 Running a simulation

Simulations can be run from command line:

python launchMTP.py

A standard launch includes automatic management of simulation replicates and output post-
processing. Settings related to the management of simulations (e.g. number of replicates,
seeds...) can be defined in the file simuParams.py. The complete parameterization of the
simulation is documented in section Input. It is also possible to run the program without
handling replicates nor post-processing outputs with the following command:

sh scripts/runMTP.sh

2.4 Compilation

When Metapop is already installed but the code base has changed and needs to be compiled,
run compileMTP.sh to update the binary.

2.5 Input

2.5.1 General structure

The model can be parameterized from the files located in user input directory. Each .lua
file is composed of sets of variables that are initialized by the user. simuConf.lua and
seed.lua define general parameters of the simulations. /species/Si.lua describes the attributes
related to the species Si. /traits/Ti.lua defines the trait i composing the phenotypes of the
individuals. Secondary .txt files can be used to describe the heterogeneity of the landscape
simulated and the dispersal of pollen and seeds (see below).

2.5.2 Initialization modes

In most of the cases, the user simply assigns a single value to the variable of interest.
Nonetheless, the composite variables which describe the spatial structure of the landscape can
be set according to three modes. These composite variables come along with another variable
called ”source”, which defines the initialization mode. Assuming a variable x, assigning
”value” to the variable source means that the user is expected to affect a single value to x.

5

The value entered will be automatically replicated in all the cells of the landscape. Affecting
”param” to the variable source automatically creates patterns of variation of the variable x
throughout the landscape, for instance a gradient. This initialization mode often requires
to set additional variables which define the direction or the magnitude of the change across
the landscape. Lastly, specifying ”userdata” requires the user to manually fill a matrix in
an external file. For instance, taking as example the selection pressure exerted on a trait
(detailed in the next section), the phenotypic optima assigned throughout the landscape can
be set by modifying the variable zoptParam in the file Ti.lua, where i is an integer used as
identifier: traits/T1.lua

zoptParam =

{

-- Source of data , allowed values: userdata , value , param

-- If source == "userdata ": matrix zopt.txt directly filled

by user

-- If source == "value ": a unique value is assigned to all

cells , arg: zopt = number

-- If source == "param ": generation of a gradient according

to one dimension , args: opposed = boolean , Kzopt = number

source = "value",

opposed = False ,

Kzopt = 10

}

Here, the ”value” initialization mode is used, the keyword ”opposed” and ”Kzopt”, useless
under this initialization mode, are ignored. Assuming the landscape simulated is a 3x3
square, the file user input/zopt.txt in this example is zopt.txt

10 10 10

10 10 10

10 10 10

2.5.3 Secondary files

The variables related to spatial heterogeneity, pollen and seed dispersal are associated with
secondary .txt and .lua files (see section 4.1, figure 3) which essentially contain initialization
matrices describing the spatial distribution of the values assigned across the landscape. These
.txt files can be generated automatically or manually depending on the mode selected in the
primary .lua files. For instance e.txt specifies the macro-environmental values associated with
each cell of the landscape simulated, for each trait, at different points of the simulations (see
below sections 3 and 4). zopt.txt and sel int.txt parameterize the selection experienced by
the individuals throughout the landscape, patterns.txt configures the dispersal of seeds and
pollen. Besides, the generation of random seeds associated with each replicate of a scenario
also generate a secondary file.

6

2.5.4 Syntax

Here are some basic notions useful for editing input .lua files:

– lists are delimited by { and }. Elements separated by ,.

traitsId = {"T1", "T2"}

– comments are defined after double dashes.

-- Genomesize is the number of locus times ploidy

– booleans are true and false without capital. nil is used for undefined values.

counterGrad = false

– strings can be defined using simple or double quotes.

fileType = "species"

More information about the parameterization of the model is available below in section Input

2.6 Output

2.6.1 Raw and processed output

Each simulation replicate generates raw and processed output data in /outputs/Ri directory,
where i designates the replicate ID. Each replicate directory contains 4 sub-directories:

– MTP : input files used to simulate the scenario.

– genotypes : genotypes of all individuals at the different steps of the simulation process.
The genotypes are recurrently saved in genes Si g .csv, where i is the species ID and g
the generation number. By default, the genotypes are stored according to the following
format :

nPop nIndiv alleleLoc1 [alleleLoc1] alleleLoc2...

– pRocessed : output files generated by the R scripts used for the automatic treatment
of the raw output.

7

– quantitative: quantitative information (additive values, differentiation, demography,
seed and pollen flow...) generated by the post-treatment of raw-data.

In addition, summary files are generated by the automatic treatment of the raw output
in /outputs directory. These files average the quantitative information produced in the
replicates. An exhaustive description of the output files is given in section 5.

2.6.2 Genotypes conversion

Metapop regularly saves the genotypes of the individuals according to its own specific format
in the directory outputs/genotypes. The script (convertGenFiles.py) can be used to convert
these files into the Fstat or Genepop format. The user can use the files produced to further
analyze the data simulated with other programs. The command required to run the script
is python convertGenFiles.py inputFile outputFile outputFormat, with outputFormat = G or
F depending whether the required format is Genepop or Fstat.

python convertGenFiles.py ./GENO.csv user_input/ind.txt

filename g

2.7 Starting meta-population

Two modes of initialization of the starting meta-population are available. In the main case
the starting meta-population is a meta-population at the mutation-migration-drift equilib-
rium generated automatically from the initial demography (N, population size) and gene
flow (m, migration rate) specified in /species/Si.lua. Under these assumptions, the station-
ary allelic frequencies in each population follow a multinomial Dirichlet distribution with
parameters 4Nmq (where q is the allelic frequency vector in the overall metapopulation).
Hence the Dirichlet distribution is used to generate the initial genotypic arrays in each pop-
ulation. This mode of initialization assumes that seeds and pollen are dispersed according
to the Wright’s Island migration model.
Alternatively the user can directly specify the genotypes of the individuals composing the
initial meta-population in the file (/ind.txt). This can be done by initializing the variable
initDemo of species/Si.lua as follows:

initDemo = {

source = "injection"

}

Under this mode of initialization the genotypes should be in the Metapop format (each indi-
vidual line have the following pattern: popNumber indNumber loc1all1 loc1all2 loc2all1...).
It is however possible to convert existing Genepop or Fstat files into the Metapop format
with the script convertGenFiles.py provided with Metapop. The script automatically de-
tects the format of the input file (Genepop or Fstat) according to their header. Assuming a

8

genotype file named GENO.csv structured according to Fstat format in the main directory,
the conversion can be done via the following command:

python convertGenFiles.py ./GENO.csv user_input/ind.txt I

Here the third parameter ”I” is mandatory to specify the conversion from Genepop or
Fstat format to Metapop format.

9

3 Model

Several initialization examples are proposed in this part, nonetheless exhaustive information
about the parameterization of the model is provided in section 4.

3.1 Frame of the model

The model is composed of three parts. The first part is related to the definition of the trait(s)
composing the phenotypes of the individuals simulated, the associated genetic architectures,
the underlying genes and genome. The second part is related to the landscape simulated.
Each cell composing the landscape is defined by the conditions of natural selection faced by
the individuals (phenotypic optima Zopt and intensity of selection ω), a macro-environmental
effect (E) which possibly affects the expression of a plastic trait, and the demography of
the initial meta-population of the species simulated (starting number of individual N and
carrying capacity K). Metapop allows the user to define any pattern of variation in these
values throughout the landscape. The third part of the model is the life cycle which defines
the sequence of the evolutionary steps and processes undergone each generation by the
individuals.

3.2 Phenotypic traits

The phenotypes of the individuals are composed of one or multiple quantitative traits. Fol-
lowing the quantitative genetics theory [1], different genetic architectures can underly each
trait.

3.2.1 Genomes

Within Metapop, a genome is designed as a linear continuous succession of loci. The total
length of the genome is indicated by the user as the total number of loci. The genome is
subdivided in chromosomes, indicated by the position of the first locus within the linear
succession. Genetic distance between successive loci is generated by the recombination rate
indicated by the user. Recombination rates can be assigned to each pair of successive loci
along the linear succession of loci. Recombination rates between successive loci at the limit
between two chromosomes (chromosome split) are set to 0.5. See next subsection, paragraph
3.4.3 for more information about the configuration of recombination.

At this stage, all loci are considered neutral by default. The next step consists in identify-
ing loci that contribute to the genetic value of traits undergoing selection, eg the quantitative
trait loci (QTL). This is first done by assigning QTLs to traits, and then identifying the po-
sition of the QTLs in the genome (number of the locus along the linear succession of loci).
Pleiotropic effects can be generated by assigning more than one trait to a given QTLs. The
following example gives some of the numerous possible genome representations associated to
a trait determined by three QTLs:

Position 0 5 10

Z1 |Q n n n|Q n n n|Q n n n

Z2 |Q n Q Q

10

Figure 2: Model structure. Z: quantitative value of the trait, G genetic value, corresponds
to the sum of the allelic effects at the loci involved in the variability of the trait, ε micro-
environmnental value randomly drawn for each individual, E: macro-environmental value
assigned at the cell/population scale, a sum of the allelic effects observed at the loci deter-
mining the intercept of the reaction norm, b sum of the allelic effects at the loci determining
the slope of the reaction norm, Zopt phenotypic optimum of a cell, a component of stabilizing
selection, assigned independently to each cell, ω intensity of the stabilizing selection exerted
in a cell, N starting number of individuals, K carrying capacity of a cell.

11

Z3 |n Q Q n|n n n n Q n

In this example, Q stands for QTL, n stands for neutral loci, the symbol — indicates a
chromosome split, namely the beginning of a new chromosome. In the case of Z1, the QTLs
are equidistant and positioned on separate chromosomes, in the case of Z2 all the QTLs are
on the same chromosome but separated by distinct distances, while Z3 is based on QTLs
located on two chromosomes of distinct lengths. The trait Z3 can be initialized as follows:
species/S1.lua

nLocus = 10

genomeSize = 20

chromoSplit = {0, 4}

traits/T1.lua

ltypes = {

{

id = "a",

lociList = { 1, 2, 8 },

},

}

3.2.2 From genomes to traits: phenotypic and genetic subdivisions

In the simplest case, the phenotypic value of trait Z is the the sum of the additive effects
of the alleles at the n QTLs l contributing to the trait and a random micro-environmental
contribution ε following the centered-reduced distribution N (0, σ2

ε). Assuming the species
under consideration is diploid, this corresponds to:

Z =
n∑
l=1

(αi + αj)l + ε

where αi, αj refer to the additive effects of the alleles observed at each of the n QTLs for a
diploid species.

In what follows we call genetic value G the sum of the additive contribution of the alleles
at the QTLs determining the value of the trait. When a species is diploid:

G =
n∑
l=1

(αi + αj)l

Thus, in the simplest case a trait value can be expressed as:

Z = G+ ε

12

In the current version of Metapop, we do not consider dominance nor epistatic interactions
effects between alleles.

Multiple populations subdivided in heterogeneous landscapes are exposed to different
macro-environmental conditions such as temperature, rainfall or any other abiotic or biotic
factor. This macro-environmental effect (E) can contribute to the phenotypic value of the
traits under investigation. For instance, in broadleaved trees, the timing of bud burst is
affected by local temperatures. Overall, all individuals of a population are exposed to the
same macro-environmental conditions and thus share the same E value. In Metapop, ac-
counting for the contribution of plasticity to a trait value is done in two situations: when
the plasticity of the trait is only generated by environmental effects (environmental plastic-
ity) or when the plastic response depends also on genotype-environment interactions GxE
(heritable plasticity). In the former case, when phenotypic plasticity is not heritable, the
environmental conditions defined in a cell affect uniformly all the individuals whatever their
genotypes:

Z = G+ E + ε

where E stands for the macro-environmental effect. Alternatively, when phenotypic plasticity
includes also genotype-environment interaction GxE, a linear norm characterized by slope b
and intercept a can be defined according to:

Z = a+ bE + ε

Here a corresponds to the additive contribution of the QTLs which determines specifically
the intercept of the reaction norm, and b corresponds to the additive contribution of the
QTLs which determine the slope of the reaction norm. Hence, when plasticity is heritable,
two subsets of loci corresponding to a and b have to be initialized by the user. Importantly,
there is no constraint nor cost associated with the evolution of plasticity in Metapop.

Here are three examples of initialization of a trait T1 determined by 7 QTLs. The 3
examples of T1.lua file provided below illustrate each of the possible phenotypic subdivisions.
Z = G+ ε: species/T1.lua

nhpp = false

ltypes = {

{

id = "a",

lociList = { 1, 2, 3, 4, 5, 6, 7 },

},

},

Z = G+ E + ε: species/T1.lua

-- Phenotypic plasticity

-- If non heritable phenotypic plasticity , Z = G + E + epsilon

-- no GxE interaction , nhpp should be true

nhpp = true

ltypes = {

13

{

id = "a",

lociList = { 1, 2, 3, 4, 5, 6, 7 },

},

}

Z = a+ bE + ε: species/T1.lua

-- Phenotypic plasticity

-- If non heritable phenotypic plasticity , Z = G + E + epsilon

-- no GxE interaction , nhpp should be true

nhpp = false

-- If GxE interaction , E reference is needed

Eref = 0.1

ltypes = {

{

id = "a",

lociList = { 1, 2, 7 },

phi = 0.5

},

{

id = "b",

lociList = { 3, 4, 5, 6 },

phi = 0.5

},

}

A full initializing example including two traits is proposed in section 6 (scenario B).

3.2.3 Heritability and allelic effects

The allelic effects assigned to each QTL l are randomly drawn from a Gaussian distribution
N(0,Wl×σ2) where Wl designates the weight of the locus and σ2 is the additive variance of
the allelic effects drawn, respectively. By default, all the loci weights equal 1, alternatively
they can follow a pseudo-Gamma distribution parameterized by the user. The specification
of the loci weights can be done in /traits/Ti.lua file:

varLociWeights = 0 --same weight of 1 for all loci

or

varLociWeights = 2 --loci weights follow a gamma_like

distribution

14

For technical reasons, the Gamma distribution is approximated by a Normal law: Wl ∼
|N (1/NL, Vlw)|, where NL is the number of QTLs and Vlw is the user-defined variance of
the loci weights (varLociWeights), respectively. In the example above, Vlw equals 2. The
corresponding gamma distribution defined by m and p, the respective parameters for shape
and scale, is: m ≈ 1.6, p ≈ 0.36

NL
2∗
√
Vlw

+ 0.57 ∗
√
Vlw

In the simplest case, i.e. when the decomposition of a trait does not include any GxE
interactions (Z = G + ε or Z = G + E + ε), the value of σ2 depends on the heritability of
the trait which is indicated by the user. In this case, the heritability of a trait is:

h2 =
σ2
G

σ2
G + σ2

ε

Without dominance nor epistasis, the genetic variance σ2
G is obtained from:

σ2
G =

h2 × σ2
ε

1− h2

Assuming that the QTLs are independent, the variance of the allelic effects σ2 drawn at each
locus is:

σ2 =
h2 × σ2

ε

nL × p× (1− h2)
where nL and p designate the number of QTLs and the ploidy of the species, respectively.
When a trait is plastic and includes G x E interactions (Z = a + bE + ε), the heritability
within a given population where the macro-environmental effect is E, is:

h2 =
σ2
a + σ2

bE
2 + 2Ecov(a, b)

σ2
a + σ2

bE
2 + 2Ecov(a, b) + σ2

ε

Assuming the covariance between a and b loci is initially null we have:

h2 =
σ2
a + σ2

bE
2

σ2
a + σ2

bE
2 + σ2

ε

Unlike the simplest cases, the heritability expression cannot be used to determine σ2 when
GxE interactions are simulated. In this case the definition of σ2 is based on two variables,
φa and φb. These variables indicate the proportion of the phenotypic variance that depends
on variability at a and b loci respectively [2]. The user chooses values for φa and φb at the
initialisation step. For a loci:

φa =
σ2
a

(σ2
a + σ2

bE + σ2
ε)

for b loci:

φbE =
σ2
bE

(σ2
a + σ2

bE + σ2
ε)

Hence, σ2 depends on the type of the loci and the macro-environmental value E of the
reference environment used, i.e the environment in which the additive components of the

15

traits are estimated. Assuming a null reference environment (E = 0), the additive variance
associated with the a loci is:

σ2
a =

φa × σ2
ε

(1− φa)
At each a locus:

σ2 =
φa × σ2

ε

na ∗ p ∗ (1− φa)
where na and p designate the number of a QTLs and the ploidy of the species, respectively.
The calculation of σ2

b , the additive variance at b loci, requires a non-null macro-environmental
value E:

σ2
b =

φbE ∗ (σ2
a + σ2

ε)

(1− φb) ∗ E
At each b locus:

σ2 =
φbE ∗ (σ2

a + σ2
ε)

nb ∗ p ∗ (1− φb) ∗ E
where nb and p designate the number of b QTLs and the ploidy of the species, respectively.
To sum up, in order to obtain initial values for σ2, the user is asked to provide initial values
of h2, φa, φbE, depending on the genetic architecture.

3.3 Inheritance

By default, in the diploid case, all the loci are inherited both from the female and male
parents. It is however possible to simulate alternative patterns of inheritance by modifying
the inheritance variable in the species file (Si.lua). This variable specifies from which parent
each allele is inherited. The inheritance variable can be initialized either globally or for each
locus. A single value indicates that a unique value is used for all the loci, alternatively,
multiple values (i.e. the same number than the number of loci) can be specified. In any case,
the sum of the integer should equal the ploidy of the species considered. In the following
example, the species is diploid and all the loci are inherited both from the female and the
male parent in equal proportion:
S1.lua

-- Inheritance , sum must equal ploidy

inheritance = {

female = { 1 },

male = { 1 },

}

Let us consider a genome comprising 5 loci. Different inheritance patterns can be defined at
the different loci:

-- Inheritance , sum must equal ploidy

inheritance = {

female = { 1, 2, 0, 0, 0},

16

male = { 1, 0, 2, 2, 2},

}

In this example locus 2 is exclusively inherited from the female parent while locus 3, 4 and
5 are exclusively inherited from the male parent. Finally another example of an haploid
species could be:

-- Inheritance , sum must equal ploidy

inheritance = {

female = { 1, 1, 0, 0, 0},

male = { 0, 0, 1, 1, 1},

}

3.4 Life cycle

In Metapop generations do not overlap: all the individuals undergo simultaneously each
step of the life cycle (Figure 2), moreover the parents are removed from the landscape once
offspring have been generated. To sum up, each individual undergoes a single life cycle.

3.4.1 Natural selection

The life cycle starts with natural selection (Figure 2). Each cell composing the landscape
(see next section) imposes a stabilizing selection pressure [3] on the phenotypes. Fitness
values W are computed for each individual and determine the probability to reproduce and
contribute to offspring production. In the case of a phenotype composed of a single trait Z,
the fitness value W (Z) is computed from a local optimal trait value Zopt and an intensity of
selection 1/ω2:

W (Z) = exp

(
−(Z − Zopt)2

2ω2

)
The phenotypic optimal values and the intensity of selection are set for each trait Z in

the file traits/ty.lua. There is a separate file for each trait. Within each file, the keywords
selIntParam and zoptParam designate the intensity of selection 1/ω2 imposed on the trait
and the local optimal values Zopt assigned throughout the landscape for the trait, respectively.

Here is an example of divergent selection set throughout one dimension of a landscape
structured according to a 4 x 3 grid. Phenotypes are composed of a single trait. Change
in selection pressure and environmental values start at generation 10. For more information
about the initialization modes of composite variables, see paragraph 2.5.2. For detailed
information of input files structures, see section 4.1.

conf.lua, landscape dimensions:

-- Map dimensions

mapLength = 3

mapWidth = 4

17

In this example, both the intensities of selection (selIntParam) and the optimal values
(zoptParam) are indicated manually, which has to be specified in the file /traits/T1.lua:

-- Selection Intensity

selIntParam =

{

source = "userdata",

}

-- Optimal trait value Zopt

zoptParam =

{

source = "userdata",

}

zopts.txt, optimal trait values assigned to each cell, for trait T1. At the beginning selection
is uniform, divergent selection starts at generation 8:

zopt T1 1

0 0 0 0

0 0 0 0

0 0 0 0

zopt T1 8

2 2 2 2

0 0 0 0

-2 -2 -2 -2

sel int.txt is the intensity of stabilizing selection assigned to each cell. Here a moderate
intensity of selection is specified for the whole simulation process.

selection_intensity T1 1

50 50 50 50

50 50 50 50

50 50 50 50

When a phenotype is composed of multiple traits, the fitness of each individual is calcu-
lated according to [4]:

W = exp
(
−0.5× (Z − θ)T ×Ω−1 × (Z − θ)

)
18

where Z is a vector of the trait values composing the phenotype, θ is a vector of the optimal
trait values in the cell, and Ω is a symmetrical matrix, the diagonal being the intensities
of stabilizing selection acting on each trait, and off-diagonal elements are measures of in-
tensities of correlational selection. Matrix Ω illustrates the curvature of the fitness surface
of selection intensity. When multiple traits are simulated, the parameter selIntInteraction
in the file Si.lua defines the Ω matrix. Default values of off- diagonal terms are set to 0.
More information about the selection matrix can be found in section 4. Distinct optimal
phenotypes and intensities of stabilizing selection can be assigned to the cells composing
the landscape, which can result in multiple patterns of divergent selection among cells. For
instance, assuming a landscape can be summarized by latitudes and longitudes, divergent
selection can be simulated throughout one dimension, by assigning different Zoptk and ω2

values to different latitudes (see paragraph 3.5). Likewise, the phenotypic optima and the
intensities of selection can be changed over successive generations. No selection can be de-
fined by setting ω2 to large values, as for example 109.
The list of studied traits is indicated in S1.lua. For instance, if two traits are considered:
S1.lua:

traitsId = {"T1", "T2"}

Note that, by default, Metapop can simulate up to three traits. Nonetheless, this limit can
be extended by adding new trait IDs to the file .struct/traits/index.txt.

3.4.2 Demography

At each generation t, the census number Nt of individuals is updated for each cell, according
to the following demographic growth model. In each cell, Nt depends on (i) the size of the
population of parents Nt−1, (ii) a growth rate g strictly positive, (iii) the number of seeds
Ns reaching the cell, (iv) the carrying capacity K of the cell and (v), random ε values which
follows the uniform distribution U(0,1). Hence, at each generation the number of individuals
to generate is calculated from:

Nt = Nt−1 + g ×Ns × (1− Nt−1

K
) + ε

The grow rate g can be positive or negative. The number of offspring Nt is always bounded
by 0 and the carrying capacity K of the cell. Note that, because the demographic model is
grounded on a bounded sigmoid function, the values of g can have no effect on the size of a
population, depending on its size Nt and the parameter K specified.

The demography of the species simulated has to be initialized in the species files species/Sx.txt.
For instance, for a species S1, the parameters can be initialized according to:

-- Demography

cap = 1000

growth = 1

-- Initial number of individuals per cell

19

initDemo =

{

source = "value",

npop = 1000

}

Here, cap, growth and initDemo refer to K, g and the initial number of individuals N0

respectively. The number of initial individuals can be initialized according to three ways, de-
pending on the source variable. When source = ”value”, the initial number of individuals is
assigned uniformly throughout the landscape (source = ”value”). When source = ”param”
the user can rapidly enter a pattern of variation of demography according to one axis:
latitude or longitude. In this case, all the cells of the same level (latitude or longitude)
have the same initial number of individuals (see next chapter for further details). When
source = ”userdata”, the user has to fill a matrix corresponding to the size of the landscape
in the file demo.txt. The initial demographic values generated by this example can be:

1000 1000 1000 1000

1000 1000 1000 1000

1000 1000 1000 1000

At last, as presented in the first part, there is also the possibility to directly import
preexisting genotypes through the mode source = ”injection”. In this case the individuals
are imported from ind.txt. Hence, the number of individuals corresponds to the number of
genotypes.

3.4.3 Recombination

When diploid species are simulated, crossing-overs can occur during gametogenesis. The
probability of crossing over per locus can be set in /species/Sx.lua files: /species/S1.lua

crossingRate = { 0.5 }

3.4.4 Gene flow

Seeds and pollen are dispersed within and between cells according to the Wright’s Island mi-
gration model, the stepping stone migration model or any other user-defined pattern. The
selection of the island or stepping stone migration models requires the user to specify in
species/S1.lua the proportion of seeds ms and pollen mp produced by the individuals of a
population that reach the other connected populations. In the case of a user-defined dis-
persal pattern, dispersal matrix for pollen and seeds have to be filled in the file patterns.txt.
Each matrix specifies the proportions of the pollen and seeds produced which remain either
local or disperse towards other populations. This matrix should have the same dimensions

20

than the landscape defined. The values specified at the beginning of the simulation regard-
ing dispersal cannot be changed during the simulation process. The following two examples
illustrate the use of the predefined and the user-defined dispersal models.
Example 1 : pollen is dispersed according to the island migration model, seeds are dispersed
to the stepping stone migration model.

fluxSource = { pollen = "island", seed = "steppingStone" }

ms = 0.0004

mp = 0.04

Example 2 : pollen is dispersed according to a user-defined dispersal model, seeds are
dispersed according to the stepping stone migration model.

-- Migration

fluxSource = { pollen = "pattern", seed = "steppingStone" }

ms = 0.0004

mp = 0.04 --ignored here

patterns.txt

flux_pattern S1 pollen 1

4 5 2

10 50 5

4 5 2

3.4.5 Reproduction

The reproduction step produces the required number of offspring, each mating producing
one offspring. Different reproduction modes can be simulated: selfing, random, assortative
mating or mixed (random + selfing or assortative mating + selfing). Individuals are consid-
ered as monoecious. Selfing rate can be set by the user through the selfingRat variable in
/species/Sx.lua. We assume here that each individual both have female and male flowers,
and that self-fertilization can eventually occur according to a rate specified by the user. In
the case of random mating, the individuals mate freely according to their fitness values and
the pollen dispersal matrix. For each mating, the female parent is first randomly drawn,
the draw being weighted by the relative fitness values assigned during the selection step.
Then a male parent is then also drawn randomly among the individuals which contribute to
the pollen cloud that reaches the population of the female parent. Similarly to the female
parent, the draw of the male parent is also weighted by the fitness values.
In the case of assortative mating, the random draws of the female and male parents are

21

also weighted by the fitness values. Moreover for each assortative mating within popula-
tion p, a female parent is first randomly drawn from the individuals of p. The draw of
the male parent occurs next is however only made among the individuals fulfilling two re-
quirements: (1) they contribute to the pollen cloud that reaches population p, (2) their
phenotypic value ZM is sufficiently close to the phenotypic value of the female parent ZF
such that ZM ∈ [ZF − δ, ZF + δ]. The strength of assortative mating is scaled by ρ, the
correlation between the male and female phenotypic values at generation 0:

ρ =
cov(ZM0, ZM0 + δ)

σZM0
× σZM0+δ

Here ZM0 and ZF0 designate the male and female phenotypic values at generation 0, respec-
tively. σZM0

and σZF0
refer to the standard deviation of the male and female phenotypic

values at generation 0 respectively. Because in our simulations all the individuals can be
male or female individuals, σ2

ZM0
= σ2

ZF0
= σ2

Z0
. Assuming that delta follows the gaussian

distribution N (0, σ2
δ), and depends on ρ and σ2

Z0
, each generation a δ value was randomly

drawn from the truncated gaussian distribution:

N (0,

√
σ2
Z0

ρ2
− σ2

Z0
)

Each δ value was used for all the matings occurring within a generation.

In the example below, the individuals of species S1 mate assortatively according to the
character T1. Selfertilization rate is 0.001

S1.lua.txt

-- Reproduction regime

assortMating = "T1"

rho = 0.8

selfingRate = 0.001

3.4.6 Mutation

Mutation is the last genetic process considered in the life cycle (Figure 2).
When a mutation occurs at a given locus, a new allele is randomly drawn among a

predefined number of possible alleles that are generated at the beginning of the simulation.
The mutation rate of a species Sx can be initialized as:
/species/Sx.lua

mutationRate = { 1e-05 }

22

3.5 Landscapes

A landscape is sketched as a collection of cells (Figure 2), also referred as patches, distributed
over two dimensions. The individuals of the same species co-existing in a cell form a popu-
lation. A landscape is characterized by (i) its shape and dimensions,(ii) the distribution of
macro-environmental values across the cells, (iii) the distribution of the selection pressures
(Zopt, 1/ω2) among the cells.

3.5.1 Shape and dimensions

A landscape simulated by Metapop is always a rectangle (or square) defined by a longitude
(called mapWidth in the parameter file) and a latitude (called mapLength in the parame-
ter file) expressed as a number of cells along the two dimensions. The dimensions of the
landscape should be defined in simuConf.lua:

mapLength = 4

mapWidth = 3

3.5.2 Macro-environmental effect

In Metapop, macro-environmental values E can influence the expression of plastic traits (see
section 3.2). The E values are assigned at the cell level for each plastic trait composing the
phenotype. Hence, all individuals of a cell are exposed to the same macro-environmental
conditions. When phenotypes are composed of multiple plastic traits, multiple environmen-
tal values are assigned to a cell. It is important to note that the macro-environmental values
E differ from the micro-environmental influence ε aforementioned (see 3.2.2) which is related
to other less determinant factors such as the position of an individual in its cell. Users can set
any spatial patterns of variation of E values, such as geographic gradients at the landscape
scale. The initialization of E values can be done according to three modes: ”userdata”,
”value” and ”param” (see ”input section” 4.2 for more information). The ”userdata” mode
requires the user to fill matrix (e.txt file) assigning an E value to each cell of the landscape.
Under this initialization mode, at least one matrix has to be defined per trait. Moreover,
under this initialization mode exclusively, the user can set temporal variations of E values
by defining multiple matrix (see example below). Each matrix defined in the file e.txt must
be entitled by a line ”# E trait name generation”, where trait name and generation indicate
the trait targeted and the point of the simulation at which the matrix of E values is taken
into account, respectively. The ”value” mode requires a single value uniformly assigned to
all the cells of the landscape. One value per trait composing the phenotype is required. Fi-
nally the ”param” mode automatically generates unidimensional gradients of environmental
values across the length of the landscape, i.e. the south-north direction. The gradient is
scaled from the slope ke entered by the user.

In the example below, we manually set the macro environmental values influencing the
expression of a single plastic trait T1. All the E values are set to 0 at the beginning of the
simulation and modified at generation 8.

23

in /user input/traits/T1.lua:

-- Macro -environmental effect E

envEffParam =

{

-- Source of data , allowed values: userdata , value , param

-- If source == "userdata": matrix e.txt directly filled by

user

-- If source == "value": a unique value is assigned to all

cells , arg: E = number

-- If source == "param": generation of a gradient according

to one dimension , arg: Ke = number ,

source = "userdata",

}

nhpp = true

The last line initializing nhpp variable to true, indicates that phenotypic plasticity is here
not heritable, which corresponds to the phenotypic decomposition formalized by equation
(2). in /user input/e.txt :

E T1 1

0 0 0 0

0 0 0 0

0 0 0 0

E T1 8

4 4 4 4

0 0 0 0

-4 -4 -4 -4

In this example, the first matrix used at generation 1 for trait T1 is replaced by the second
matrix at generation 8.

3.5.3 Natural selection

Like macro-environmental values, the optimal phenotypic values (Zopt) and intensity of sta-
bilizing selection (1/ω2) (subsection 3.4) exerted on the traits can be independently assigned
to the cells composing the landscape. This can result in multiple patterns of divergent se-
lection among cells. For instance, divergent selection can be simulated by assigning different
Zopt and ω2 values to latitudes. Note that the intensities of selection set by the users in the
configuration files are ω2 values, inversely proportional to the strength of stabilizing selection
1/ω2.
The initialization of Zopt and ω2 values can also be done according to three modes: ”user-
data”, ”value” and ”param” (see ”input section” 4.2 for more information). The ”userdata”

24

mode requires the user to fill matrix in zopt.txt and sel int.txt files. Each matrix respectively
assigns a Zopt and an ω2 value to each cell of the landscape. Under this initialization mode,
at least one Zopt matrix and one ω2 matrix have to be defined per trait. Each matrix defined
in the zopt.txt must be entitled by a line ”# zopt trait name generation”, where trait name
and generation indicate the trait targeted and the point of the simulation at which the ma-
trix is taken into account, respectively. Each matrix defined in sel int.txt must be entitled
by a line ”# selection intensity trait name generation”. Hence, under the ”userdata” mode,
the multiple matrix successively used by the program a different points of the simulation can
describe spatio-temporal variations of both Zopt and ω2 values. The ”value” mode requires
single Zopt and ω2 values uniformly assigned to all the cells of the landscape. One Zopt and
ω2 values per trait composing the phenotype is required. Finally the ”param” mode is only
available for the Zopt values. This mode automatically generates unidimensional gradients
of phenotypic optima across the length of the landscape. The gradient is scaled from the
slope kzopt entered by the user and a boolean variable ”inversed” which determines the di-
rection of the gradient generated. ”inversed” set to ”False” indicates that the direction of
the Zopt gradient is south-north, as any macro-environmental gradient defined. ”inversed”
set to ”True” indicates that the direction of the Zopt gradient is north-south.

In the example below, we manually set the the phenotypic optima through the ”userdata”
mode. No temporal variation of Zopt values is considered. The selection intensity is uniformly
set to 1/50 trough the ”value” mode.

in /user input/traits/T1.lua:

-- Selection Intensity

selIntParam =

{

-- Allowed values: userdata , value

-- If source == "userdata": matrix sel_int.txt directly

filled by user

-- If source == "value": a unique value is assigned to all

cells

source = "value",

omega = 50,

}

-- Optimal trait value Zopt

zoptParam =

{

-- Source of data , allowed values: userdata , value , param

-- If source == "userdata": matrix zopt.txt directly filled

by user

-- If source == "value": a unique value is assigned to all

cells , arg: zopt = number

-- If source == "param": generation of a gradient according

to one dimension , args: opposed = boolean , Kzopt = number

source = "userdata",

25

opposed = false ,

Kzopt = 2,

}

in /user input/zopt.txt :

zopt T1 1

2 2 2

0 0 0

-2 -2 -2

26

Figure 3: Associations between primary and secondary configuration files. Dotted arrow:
automatic production, plain arrow: automatic or manual production.

4 Input

As mentioned in ”Getting started” section, the simulations can be configured by modifying
the .lua files from user input/ directory. This section presents in detail the variables that
have to be initialized in each input file.

4.1 Overall structure

The primary files of interest are :

– simuConf.lua. Used for simulation management - number of replicates, seeds, simula-
tion length, reference cell - and description of the dimensions of the landscape.

– species/Sn.lua, where n refers to the id of the species. Used for the specification
of information related to the biology of the species considered, for instance: ploidy,
reproduction system, gene flow. Although several species profiles can be easily created,
there is no possibility of simulating simultaneously multiple species with the current
version of the model.

– traits/Tn.lua, where n is the id of the trait. Used for information related to a trait
contributing to the phenotype of the individuals of a given species.

Some of the variables in those files trigger the creation of additional .lua or .txt files exploited
by the model. In some cases, when specified in the primary .lua files, the user has the
possibility to manually create the additional file for some variables, by selecting the relevant
keyword during the initialization of the corresponding variable. The distinct initialization
modes are introduced in paragraph 4.1. Figure 3 summarizes the links between the primary
and secondary configuration files.

Here is some information about the secondary files generated:

27

– seed.lua. Random seeds used for the generation of random variables during the simu-
lations.

– pattern.txt. Patterns of pollen and seed flow dispersal.

– demo.txt. Initial population size at the starting meta-population.

– zopt.txt. Optimal phenotypic values assigned tor each trait throughout the landscape
at different time points of the simulation.

– e.txt. Macro-environmental values affecting the expression of plastic trait. Also as-
signed across the landscape and can be changed at different time points of the simula-
tions.

– sel int.txt. Intensity of the selection exerted on each trait.

4.2 Files and variables

We now detail the structure of each primary configuration file. Several complete examples
of configuration files are also provided in the section 6 (Configuration examples).

simuConf.lua

– REPLICATIONS: positive integers, number of simulation replicates to run.

– IS RANDOM SEED, IS RANDOM SEED INIT: booleans, determine if the seeds (here
random generators number, nothing to do with trees) have to be renewed between
simulation replicates. IS RANDOM SEED determines whether the seeds used dur-
ing a simulation have to randomly generated, IS RANDOM SEED INIT determines
whether the seeds used for the initialization of the simulations are randomly generated.

– mapLength, mapWidth: positive integers, dimensions of the landscape.

– simLength: positive integer, number of generations simulated.

– saveStep: positive integer, periodicity of saving raw output data.

– refCell: positive integer, cell used as reference for gene flow study, to know where the
parents of the individuals of this cell come from.

-- REPLICATIONS PARAMS

REPLICATIONS = 3

IS_RANDOM_SEED = true

IS_RANDOM_SEED_INIT = true

-- SIMULATION PARAMS

-- Map dimensions

28

mapLength = 5 -- MUST be even if loctypes b or c is present ,

otherwise some EE == 0 and AE == -Inf

mapWidth = 1

-- Simulation length

simLength = 10

saveStep = 5

outputDir="../outputs/"

refCell = 23 -- cell used as reference for gene flow study

species/Sn.lua One file per defined species. Simulation of multiple species is not available
in the current version of Metapop. The first file to be modified is species/S1.lua:

– traitsId: list, traits related to the phenotype of the individuals of the species.

fileType = "species"

id = "S1"

traitsId = {"T1", "T2"}

– nLocus, genomeSize, ploidy: positive integers, nLocus is the number of loci, genomeSize =
nLocus ∗ ploidy. The ploidy of the species should equal 1 or 2.

nLocus = 45

-- Genomesize equals number of locus times ploidy

genomeSize = 90

ploidy = { 2 }

– nAllpLoci, nAllInit: positive integers. nAllpLoci indicates the number of alleles per
locus, it is used to randomly generate a set of alleles per locus at the beginning of each
simulation. The number specified is assigned globally when a single value is given,
or independently to each locus (neutral and QTL) when multiple values are specified.
nAllInit is the number of alleles initially present in the starting meta-population at
each locus. Only global initialization are possible, i.e. all the loci are initialized
simultaneously.

-- Number of allele per locus

nAllpLoci = { 100 }

-- Number of alleles initially present in the meta -

population for each trait. Cannot exceed nAllpLoci

nAllInit = { 6 }

29

Another possible configuration for genomes composed of 5 loci:

nLocus = 5

...

-- Number of allele per locus

nAllpLoci = { 100, 100, 200, 100, 100 }

-- Number of alleles initially present in the meta -

population for each trait. Cannot exceed nAllpLoci

nAllInit = { 6 }

– crossingRate, chromoSplit, mutationRate: crossingRate is a list of floats included in
[0, 0.5], which corresponds to the recombination rate, i.e. the probability of having
a crossing over at each locus. The list may contain one value, in which case the
recombination rate will be the same at each locus, or it may contain nlocus values when
the rate is defined for each locus.

chromoSplit is a list of positive integers, which specifies the position of the beginning
of each chromosome across the genome, in number of loci. mutationRate is a float
included in [0, 1], defines the probability of occurrence of mutation at each locus. When
a mutation occurs, the allele at the corresponding locus is replaced by an other allele
drawn randomly from the set of alleles initially constructed from nAllpLoci.

crossingRate = { 0.5 }

chromoSplit = {0, 20}

– inheritance: inheritance.female or inheritance.male are integers included in [0, 1, 2]
indicating whether the genes are inherited from the female and/or the male parent. For
each locus the sum of the inheritance specified should equal the ploidy of the species.
Hence, for a diploid species, the integer 2 assigned to inheritance.female indicate that
a locus is exclusively inherited from the female parent. In this case, the corresponding
integer assigned to inheritance.male is 0. The inheritance can be initialized globally,
i.e. simultaneously to all the loci, or separately for each locus. Assuming a genome of
4 loci:

-- Global standard initialization

inheritance = {

female = { 1 },

male = { 1 },

}

-- Alternative inheritance pattern initialized for each

locus

30

inheritance = {

female = { 1, 2, 1, 0},

male = { 1, 0, 1, 2},

}

– assortMating, rho, selfingRate: Under assortative mating, matings can only occur
between parents showing similar phenotypic values at a given trait. assortMating
is a string indicating the name of the trait which triggers the selection of mating
parents. No assortative mating, which is equivalent to random mating, is simulated
when assortMating is initialized with none. rho is a float between 0 and 1 which scales
the required correlation of phenotypic values between mating parents. selfingRate
indicate the proportion of mating consisting in self-fertilization.

assortMating = nil

assortMating = "T1"

rho = 0.8

selfingRate = 0.001

– fluxSource, ms, mp, Nm: fluxSource.pollen and fluxSource.seed take each a value
from steppingStone, island, pattern and define the dispersal of pollen and seeds re-
spectively. When the pattern value is assigned, the secondary file pattern.txt has to be
manually created, it is automatically created otherwise. Using the manual initialization
allows the user to change the dispersal pattern at different points of the simulations.
ms and mp define respectively the ratio of seeds and pollen dispersed from a population
to other connected populations. These two variables are effectively used by the model
only when fluxSource.pollen and fluxSource.seed are initialized with steppingStone
or island. Nm quantifies the overall number of migrants in the initial meta-population.
It is only used to generate, prior to any simulation, the initial allelic frequencies de-
scribing a meta-population at the mutation-migration-drift equilibrium, assuming an
Island migration model (Dirichlet distribution). For species S1:

fluxSource = { pollen = "pattern", seed = "pattern" }

ms = 0.0004 -- unused here

mp = 0.04 -- unused here

-- Used to generate initial allelic frequencies

Nm = 10.2

In the required patterns.txt file, the user has to indicate the proportion of the pollen
and/or seed produced that reaches the connected cells or populations. Here 8/13 of the

31

pollen produced by the male individuals of a population is spread equitably towards
the surrounding populations. At generation 10 the dispersion curve changes and the
proportion of pollen going to the outside of the cell becomes 4/7.

Seeds here disperse according to a stepping stone model1 with 4/12 of the produced
seeds reaching the adjacent cells.

flux_pattern S1 pollen 1

1 1 1

1 5 1

1 1 1

flux_pattern S1 pollen 10

0 1 0

1 3 1

0 1 0

flux_pattern S1 seeds 1

0 1 0

1 8 1

0 1 0

– initDemo, growth, cap: initDemo specifies the census population size of the starting
meta-population, namely the number of individuals initially present in each cell of
the landscape at the beginning of the simulation process. The three modes of initial-
ization introduced in paragraph 2.5.2 are available for the initialization of the census
population sizes. When the variable source is initialized with ”userdata” the user is re-
quired to manually fill a matrix in the secondary file demo.txt. Initializing source with
”value” assigns a unique value, set in npop variable, globally at the landscape scale.
Using ”param” allows the user to specify a variation of the initial number of individuals
according to latitudes or longitudes. The two last initialization modes automatically
produce the secondary file demo.txt from the values assigned to the variable npop.

Based on these two cases, the variable npop can be initialized according to two ways.
When the value initialization mode is selected, npop should contain a positive integer.
When the param initialization mode is selected, npop contains a list of integers, which
describes a variation of the initial number of individuals across the landscape. In this
latter case, the vertical variable specifies the direction of this variation throughout
the landscape, latitudinal if vertical = true or horizontal if vertical = false. In this
initialization mode, the number of integers assigned to npop has to equal the number
of latitudinal or longitudinal levels of the landscape.

Lastly, the additional ”injection” mode activates the generation of the initial population
from an external file ind.txt.

1manually initiallized, the same seed dispersion pattern could have been obtained by changing the seed
fluxSource to ”steppingStone”, and setting ms = 0.33 in the species configuration file S1.

32

Some setting examples:

initDemo =

{

source = "value",

npop = 500 -- global initialization

}

Across a 4x4 landscape, this global initialization will generate the following demography
structure:

500 500 500 500

500 500 500 500

500 500 500 500

The initial demography can also be parameterized differently, without defining the
whole map, through the param initialization mode:

initDemo =

{

source = "param",

vertical = false ,

npop = {0, 500, 100, 0}

}

The param initialization mode will generate the following demographic structure:

0 500 100 0

0 500 100 0

0 500 100 0

The last initialization for population description through the injection mode is written:

initDemo = {source = "injection"}

– selIntInteractions: list of non-null off-diagonal values of the selection intensity matrix.

selIntInteraction = {T1_T2 = 5}

33

Figure 4: Example of fitness variations in the multi-trait case. ω1
2, ω2

2 refer to the diagonal
values of the selection matrix Ω used for the fitness computation. The x axis of the graph
represents the off-diagonal values (symmetrical). For this graph we took ω1

2 = ω2
2, with 2

examples: ω1
2 = ω2

2 = 5 for a strong selection pressure and ω1
2 = ω2

2 = 15 for a weaker
selection pressure.

– The selection intensity matrix Ω is a n∗n matrix, where n is the number of traits. For
instance, for two traits:

Ω =
ω2
1 ω2

1,2

ω2
2,1 ω2

2

, where ωi is related to the strength of selection exerted on trait i and ω2
i,j to the

co-selection strength for trait i given trait j. ω2
i,j are the values that are defined in the

selIntInteraction variable.

For the following development, a simple matrix is build with a an identical value for
both diagonal values and b as identical value for both off-diagonal values:

Ω =
a b
b a

We illustrate here with an example how the user may choose off diagonal terms of the
Ω matrix in the case on natural selection acting on two traits 1 and 2. Off diagonal
terms are measures of intensities of correlational selection called here b terms for the
sake of simplicity.

Figure 4 displays the evolution of fitness in case of two traits T1 and T2. The focus
is put on the direction of variation of phenotypic values compared to the expected

34

optimum for the given trait. -1 and 1 in the pair (-1, 1) is the difference Z − Zopt for
each trait, and could be written: (ZT1 − ZoptT1 , ZT2 − ZoptT2)

For example, the point of the blue curve at b = 2 gives the fitness value for

(z − θ) =

(
ZT1 − ZoptT1
ZT2 − ZoptT2

)
=

(
−1
1

)
,Ω =

(
5 2
2 5

)
In the current case, for the second trait, Z is always the same: its value is greater than
Zopt and their difference is 1. The difference of ZoptT1 and ZT1 is also always 1, but the
value can be lower than the optimum (-1) or greater (1). If the differences have the
same sign, (1, 1) or (-1, -1), we have a covariation of these values. If their signs are
opposed (1, -1) or (-1, 1), there is a countervariation.

This figure shows the similarity of the fitness variation profile for ω1
2 = ω2

2 = 5 and
ω1

2 = ω2
2 = 15, there is a vertical translation and flattening for a=15 but the shape is

the same.

The value is the same for countervariation and covariation when the non-diagonal
values are null. But the covarying values have a greater value than the null case when
b (the non-diagonal value w12 of the selection matrix) is positive, and lower than the
null case when b is negative.

When the interaction between traits is positive, the fitness of covarying values becomes
greater than without interaction, and lower when the interaction is negative.

traits/Tn.lua Depending on the number of the traits, multiple trait files can be specified.
Each trait is identified by an id and associated with a species:

fileType = "trait"

id = "T1"

species = "S1"

The main parameters are:

– h2:, float, varies between 0 and 1, gives the initial heritability of the trait. Initial
heritability value is needed at the beginning to assign allelic effects at the QTLs (see
Model section).

– varLociWeights:, float, indicates the variance of the weights of each locus, which
affects the variance of the allelic effects generated: the larger the weight of a lo-
cus, the larger the variance of the additive effects of the allele drawn at this locus.
When varLociWeights is set to 0, all the loci have the same weight of 1. When
varLociWeights > 0, the loci weight are distributed according to a gamma-like distri-
bution.

35

varLociWeights = 2

– selIntParam: integers, are the ω2 used to estimate the intensity of selection exerted on
the trait. The intensity of selection is equal to 1/ω2, in each cell of the landscape.

This variable is associated with the secondary input file sel int.txt. When selIntParam.source
is set to ”value”, a unique value is assigned to all cells and the corresponding secondary
sel int.txt file is automatically generated. When selIntParam.source is set to ”user-
data”, the user has to provide its own sel int.txt file. See paragraphs 2.5.2 and 3.5.3
for more information about the initialization modes. Here are two examples, assuming
a 3x3 landscape: First case, ”value” initialization mode:

selIntParam =

{

source = "value",

value = 50,

}

Second case, ”userdata” initialization mode:

selIntParam =

{

source = "userdata",

value = 50, --ignored here

}

A possible sel int.txt file:

selection_intensity T1 1

100 100 100

50 50 50

100 100 100

– zoptParam: floats, optimal phenotypic values assigned throughout the landscape for
the trait. These values can be initialized according to three modes of initialization.
”userdata” requires the user to directly modify the files sel int.txt or zopt.txt. In these
two files, the user has to fill the matrix of cells of the landscape. This mode allows
the user to indicate multiple matrices that will be successively used at different points
in the simulations. Each matrix is identified by a title line ”# zopt trait generation”
where trait generation respectively designate the trait targeted by selection and the

36

generation number at which the matrix is applied during the simulation (see paragraph
3.5.3 for an example). The ”value” mode assigns a unique value specified in the variable
zopt to all cells. The ”param” initialization mode generates automatically a gradient
of values throughout the landscape, according to one dimension, centered around 0. In
this case, the variable Kzopt defines the slope of the phenotypic optimal values, and
the variable opposed specifies the direction of the gradient relatively to the gradient of
environmental values, which has a south-north direction. To be activated, this option
requires the existence of an environmental gradient activated through the variable
envEffParam (see below).

zoptParam =

{

source = "param",

opposed = false ,

Kzopt = 0.2 ,

}

– envEffParam: floats, macro-environmental values affecting the expression of plastic
traits. The macro-environmental value E is always associated to a trait and to a cell.
The initialization modes available are the same as zoptParam: ”userdata”, ”value”
and ”param”. Each matrix defined in the ”userdata” mode has to be identified by a
title line ”# e trait generation” where trait generation respectively designate the trait
affected by the macro-environmental effect and the generation number at which the
matrix is applied during the simulation (see paragraph 3.5.2 for an example) When
source equals ”param”, the slope of the macro-environmental gradient generated is
indicated by the variable named Ke. By default, the gradient generated follows a
south-north direction and is centered around 0. Other spatio-temporal patterns of
variations can be generated through the ”userdata” initialization mode.

– nhpp: boolean, defined whether plasticity is heritable (GxE interactions) or not (no
GxE interaction), when a trait is plastic (see paragraph 3.2.2).

– Eref : positive value, defines the reference environmental value used to generate the
allelic effects at the a and b loci when a trait is plastic and plasticity is heritable (GxE
interactions).

– ltypes, object composed of two parts. When the trait is not plastic, ltypes specifies
the loci under selection (QTLs). When a trait is plastic (GxE interactions), ltypes
determines which QTL(s) are associated with the intercept of the reaction norm (a
loci) and which QTL(s) affect the slope of the reaction norm (b loci). Moreover, when
GxE interactions are simulated, phi values have to be indicated, for each type of locus.
A phi value corresponds to the proportion of phenotypic variance due to the additive
variance at a type of locus (see formula in section 3.2.3 at page 15). phi values are
used to draw the allelic effects at each locus.

37

-- Phenotypic plasticity

-- If non heritable phenotypic plasticity , Z = G + E +

epsilon

-- no GxE interaction , nhpp should be true

nhpp = false

-- If plasticity , need E reference (not necessary otherwise

)

Eref = 0.1

-- Otherwise Z = a + bE + epsilon , two kinds of locus a and

b

ltypes = {

{

id = "a",

-- Locus of this ltype. Must be included in the

species loci

lociList = { 1, },

-- Only used for allelic effects generation at

locus a

phi = 0.1 ,

-- Power of E

pow = 0,

},

{

id = "b",

lociList = {2},

phi = 0.9 ,

pow = 1,

}

38

5 Output

5.1 Raw output

Each simulation replicate generates raw output in /output/Ri directory, where i designates
the replicate ID. This directory contains 3 sub-directories:

– settings summarizes the settings specified. Consists in a simple copy of the files modi-
fied by the user in user input before the launch of the simulations

– genotypes contains the genotypic arrays of all individuals at different steps of the
simulation process, according to the following format in case of haploidy:

nPop nIndiv alleleLoc1 alleleLoc2...

or the following one in case of diploidy:

nPop nIndiv alleleLoc1 alleleLoc1 alleleLoc2 alleleLoc2...

– quantitative, contains quantitative information about traits, fitness, loci and gene flow.
This directory includes the following files:

– g TR-add.csv : additive values, i.e. sum of the additive contribution of the alleles
observed at all QTLs involved in the variability of the trait TR (see paragraph
3.2.2), at generation g.

– g TRaddbylocus.csv : additive values at each locus associated to trait TR at gen-
eration g.

– g TR-pheno.csv : trait values, i.e. sum of the additive, the macro- and the micro-
environmental values (see paragraph 3.2.2), for trait TR at generation g.

– g TR-add-a.csv : additive values at the a loci associated with the plastic trait TR
at generation g.

– g TR-add-b.csv : additive values at the b loci associated with the plastic trait TR
at generation g.

– g TR-epsi.csv : micro-environmental values associated with the trait TR at gen-
eration g.

The directory also contains information about migration flux: for a cell given as refer-
ence in simuConf.lua, the ”geneflow” files contain a map with every cell. Each value
corresponds to the quantity of pollen (geneflowP) or seed (geneflowS) coming from
each cell that generates the individuals of the population in the reference cell:

39

– g geneflowP.csv : quantity of pollen contributing to offspring generation in the
population of the reference cell2 at generation g.

– g geneflowS.csv : quantity of seed contributing to offspring generation in the pop-
ulation of the reference cell at generation g.

5.2 Processed output

The automatic processing of outputs generates multiple files. Depending on the user settings,
some of the files mentioned may not be generated in all cases. For instance the correlation files
between traits M* Gcorr and M* Pcorr will not be generated if only one trait is simulated.
Within the processed files listed below, the values given between brackets correspond to the
variances among the simulated replicates.

Quantitative genetics

– Summary Demography : number of individuals per cell or populations for the simulation
steps recorded.

step Pop 00 Pop 01 Pop 02 Pop 03

1 500.0 [0.0] 500.0 [0.0] 500.0 [0.0]

50 500.0 [0.0] 500.0 [0.0] 500.0 [0.0]

– Summary Gcorr : coefficients of genetic correlation between traits. CCG b corresponds
to the correlation matrix computed at the between-populations level,CCG w corre-
sponds to the correlation matrix calculated at the within-population level averaged
over all populations. Numbers between brackets indicate the variance over replicates.

–
step CCG_b[1 , 1] CCG_b [1 , 2] CCG_b [2 , 2]...

1 1.0 [0.0] 0.014 [0 .0079] [0.66] 1.0 [0.0]...

50 1.0 [0.0] 0.08 [0.0071] 1.0 [0.0]...

– Summary popGen glob: Diversity and differentiation parameters for all types of loci:
Gst, Hs and Ht.

step Gst Hs Ht

1 0.022 [0 .0009] 0.701 [0 .0089] 0.718 [0.0088]

50 0.039 [0 .0132] 0.675 [0.0215] 0.704 [0.0133]

2The ID of the cell corresponds to the parameter refCell of the input file simuConf.lua. The populations
are numbered from 0 (top left of the map) to the number of cells minus one (bottom right). Cells are
numbered from left to right, then from top to bottom.

40

– Summary QTLs : quantitative values for the loci under selection (QTLs): Gst q, Hs q,
Ht q, Qst, Qst a, Qst b, theta b, theta w.

step [T1] Gst_q [T1] Hs_q [T1] Ht_q [T1] Qst...

1 0.02 [0.001] 0.74 [0.03] 0.763 [0.03] 0.25 [0.17]...

50 0.02 [0.005] 0.73 [0.02] 0.76 [0.02] 0.26 [0.21]...

These genetic index are calculated for a and b loci separately, when the model with
genetic plasticity is used.
Gst: differentiation at QTLs.
Hs q: maean population diversity at QTLs.
Ht q: total diversity at QTLs.
Qst: differentiation at the quantitative trait.
theta b: component of the between population variance due to covariance of allelic
effects at the underlying QTLs.
theta w: component of the within population variance due to covariance of allelic
effects at the underlying QTLs.

– Summary Pcorr : same as Gcorr, but for phenotypic correlation coefficient between
traits.

– Summary TABLE ADDMEAN-Tx-a byPop: additive values at a QTLs for each pop-
ulation (lines) and each step (columns) recorded.

– Summary TABLE ADDMEAN-Tx-b byPop: additive values at b QTLs for each pop-
ulation and each step of the simulation saved.

5.3 Output conversion

The genotypes (genotypic arrays for each individual) produced by each simulation are recur-
rently saved in genes Si g .csv where i is the species ID and g the generation number. These
files can be converted to Fstat and Genepop files with the script /convertGenFiles.py. For
more information about these two formats, see the reference papers [6] and [5]. For instance,
the conversion of the genotypes of species S1 saved at generation 20 can be used to generate
a corresponding Genepop files using the option G:

python convertGenFiles.py user_input/R1/genes_S1_20.csv new_filename G

This command lines allow to construct a new file ”new filename”. Conversion to the Fstat
format requires to specify the option F

The conversion can be done in the other direction as described in the population import
section with the option I, to get the ind.txt file from a Fstat or Genepop file.

41

6 Appendix: configuration examples

This appendix provides the complete configuration of two scenarios A and B. While sce-
nario A is a simplified scenario, scenario B is more sophisticated, and includes changes in
demography, different locus types, and multiple traits.

These scenarios are available in the folder ./EXAMPLES, and the corresponding input
files can be easily copied into the ./user input folder. To do so on Linux systems, use the
command:

./scenarInputSet.sh A

Replace A by B to launch the scenario B. The detail of each file is given below.

Scenario A: neutral

simuConf.lua

-- REPLICATIONS PARAMS

REPLICATIONS = 5

IS_RANDOM_SEED = true

IS_RANDOM_SEED_INIT = true

-- SIMULATION PARAMS

-- Map dimensions

mapLength = 11

mapWidth = 5

-- Simulation length

simLength = 1000

saveStep = 20

outputDir = "../outputs/"

refCell = 1

42

species/S1.lua

-- Id of the trait , must be unique , avoid spaces

id = "S1"

-- List of traits for this species

traitsId = {"T1"}

-- Genetic architecture , species level

-- Total number of locus for all traits defined. Must be

consistent with ploidy and genomeSize

nLocus = 20

-- Ploidy , 1 or 2

ploidy = { 2 }

-- Size of the genome should equal nLlocus * ploidy

genomeSize = 40

-- Number of allele per locus

nAllpLoci = { 10 }

-- Number of alleles initially present in the meta -population

for each trait. Cannot exceed nAllpLoci

nAllInit = { 6 }

-- Crossing rate , >= 0 and <= 0.5

crossingRate = { 0.5 }

-- Beginning of chromosomes

chromoSplit = {0, 20}

-- Mutation rate

mutationRate = { 0.0001 }

-- Inheritance , sum must equal ploidy

inheritance = {

female = { 1 },

male = { 1 },

}

-- Reproduction regime

-- Assortative or random mating: requires a trait id or nil

assortMating = nil --"T1"

-- Correlation required between the trait values of the parents

under assortative mating

rho = 0.8

-- Selfing rate

selfingRate = 0.02

-- Migration

-- Accepted values: steppingStone , island , matrix , pattern

-- matrix and pattern require a data file

fluxSource = { pollen = "island", seed = "island" }

-- ms (seed dispersal) and mp (pollen dispersal) are only used

when fluxSource = steppingStone or island

ms = 0.0002 -- 0.0002 par d f a u t

43

mp = 0.02 -- 0.02 p a r d f a u t

-- For initial allelic frequencies generation only

Nm = 10

-- Demography

-- Carrying capacity = Maximal number of individuals per cell.

Single value for all cells.

cap = 500

-- Growth for demography function

growth = 0

-- Initial number of individuals per cell

initDemo =

{

-- If source == "userdata ": matrix demo.txt directly filled

by user

-- If source == "injection ": individuals are taken as

described in external file ind.txt

-- If source == "value ": a unique value is assigned to all

cells

-- If source == "param ": generation of a variation of

demography according to one dimension

-- vertical = true for profile following map length ,

false if follows map width

-- if param , npop has to be a vector of population

demography for each line or column of pop

source = "value",

npop = 500

}

-- Selection interaction for matricial fitness computation:

-- the value of Ti_Tj (when different from 0) describes the

correlation (+ ou -) between traits

selIntInteractions = {T1_T2 = 0}

44

traits/T1.lua

id = "T1"

species = "S1"

--S7

-- Heritability of the trait

h2 = 0.833

--Locus weight for allelic effects

varLociWeights = 0 -- Changed to have uniform locus weight (

all at 1), before was at 2 (gamma distrib)

-- Selection Intensity

selIntParam =

{

-- Allowed values: userdata , value

-- If source == "userdata ": matrix sel_int.txt directly

filled by user

-- If source == "value ": a unique value is assigned to all

cells

source = "value",

omega = 1000000000 , -- neutral selection

}

-- Macro -environmental effect E

envEffParam =

{

-- Source of data , allowed values: userdata , value , param

-- If source == "userdata ": matrix e.txt directly filled by

user

-- If source == "value ": a unique value is assigned to all

cells , arg: E = number

-- If source == "param ": generation of a gradient according

to one dimension , arg: Ke = number

source = "value",

E = 2 ,

}

-- Optimal trait value Zopt

zoptParam =

{

-- Source of data , allowed values: userdata , value , param

-- If source == "userdata ": matrix zopt.txt directly filled

by user

45

-- If source == "value ": a unique value is assigned to all

cells , arg: zopt = number

-- If source == "param ": generation of a gradient according

to one dimension , args: opposed = boolean , Kzopt = number

source = "param",

opposed = false ,

Kzopt = 1.7 ,

}

-- Phenotypic plasticity

-- If non heritable phenotypic plasticity , Z = G + E + epsilon

(only loci of type a)

-- no GxE interaction , nhpp should be true

nhpp = false

-- Otherwise Z = a + bE + epsilon , two kinds of locus: a (

intercept of reaction norm) and b (slope)

-- reference environmental value Eref required

Eref = 0.5

ltypes = {

{

id = "a",

lociList = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20},

phi = 0.45 ,

},

{

id = "b",

lociList = {},

phi = 0.45 ,

}

}

Scenario B: multi-traits

conf.lua

-- REPLICATIONS PARAMS

REPLICATIONS = 5

IS_RANDOM_SEED = true

IS_RANDOM_SEED_INIT = true

-- SIMULATION PARAMS

46

-- Map dimensions

mapLength = 11

mapWidth = 5

-- Simulation length

simLength = 1000

saveStep = 20

outputDir = "../outputs/"

refCell = 1

species/S1.lua

-- Id of the trait , must be unique , avoid spaces

id = "S1"

-- List of traits for this species

traitsId = {"T1", "T2"}

-- Genetic architecture , species level

-- Total number of locus for all traits defined. Must be

consistent with ploidy and genomeSize

nLocus = 30

-- Ploidy , 1 or 2

ploidy = { 2 }

-- Size of the genome should equal nLlocus * ploidy

genomeSize = 60

-- Number of allele per locus

nAllpLoci = { 10 }

-- Number of alleles initially present in the meta -population

for each trait. Cannot exceed nAllpLoci

nAllInit = { 6 }

-- Crossing rate , >= 0 and <= 0.5

crossingRate = { 0.01 }

-- Beginning of chromosomes

chromoSplit = {0, 10}

-- Mutation rate

mutationRate = { 0.0001 }

-- Inheritance , sum must equal ploidy

inheritance = {

female = { 1 },

male = { 1 },

}

-- Reproduction regime

-- Assortative or random mating: requires a trait id or nil

47

assortMating = "T1"

-- Correlation required between the trait values of the parents

under assortative mating

rho = 0.8

-- Selfing rate

selfingRate = 0.02

-- Migration

-- Accepted values: steppingStone , island , matrix , pattern

-- matrix and pattern require a data file

fluxSource = { pollen = "island", seed = "island" }

-- ms (seed dispersal) and mp (pollen dispersal) are only used

when fluxSource = steppingStone or island

ms = 0.0002 -- 0.0002 par d f a u t

mp = 0.02 -- 0.02 p a r d f a u t

-- For initial allelic frequencies generation only

Nm = 10

-- Demography

-- Carrying capacity = Maximal number of individuals per cell.

Single value for all cells.

cap = 500

-- Growth for demography function

growth = 1

-- Initial number of individuals per cell

initDemo =

{

-- If source == "userdata ": matrix demo.txt directly filled

by user

-- If source == "injection ": individuals are taken as

described in external file ind.txt

-- If source == "value ": a unique value is assigned to all

cells

-- If source == "param ": generation of a variation of

demography according to one dimension

-- vertical = true for profile following map length ,

false if follows map width

-- if param , npop has to be a vector of population

demography for each line or column of pop

source = "param",

vertical = true ,

npop = {10, 10, 10, 10, 10, 50, 50, 40, 40, 30, 20, 10}

}

-- Selection interaction for matricial fitness computation:

-- the value of Ti_Tj (when different from 0) describes the

correlation (+ ou -) between traits

selIntInteractions = {T1_T2 = 0}

48

traits/T1.lua

id = "T1"

species = "S1"

--S7

-- Heritability of the trait

h2 = 0.833

--Locus weight for allelic effects

varLociWeights = 2

-- Selection Intensity

selIntParam =

{

-- Allowed values: userdata , value

-- If source == "userdata ": matrix sel_int.txt directly

filled by user

-- If source == "value ": a unique value is assigned to all

cells

source = "value",

omega = 5, -- neutral selection

}

-- Macro -environmental effect E

envEffParam =

{

-- Source of data , allowed values: userdata , value , param

-- If source == "userdata ": matrix e.txt directly filled by

user

-- If source == "value ": a unique value is assigned to all

cells , arg: E = number

-- If source == "param ": generation of a gradient according

to one dimension , arg: Ke = number

source = "value",

E = 2 ,

}

-- Optimal trait value Zopt

zoptParam =

{

-- Source of data , allowed values: userdata , value , param

49

-- If source == "userdata ": matrix zopt.txt directly filled

by user

-- If source == "value ": a unique value is assigned to all

cells , arg: zopt = number

-- If source == "param ": generation of a gradient according

to one dimension , args: opposed = boolean , Kzopt = number

source = "param",

opposed = false ,

Kzopt = 0.2 ,

}

-- Phenotypic plasticity

-- If non heritable phenotypic plasticity , Z = G + E + epsilon

(only loci of type a)

-- no GxE interaction , nhpp should be true

nhpp = false

-- Otherwise Z = a + bE + epsilon , two kinds of locus: a (

intercept of reaction norm) and b (slope)

-- reference environmental value Eref required

Eref = 0.1

ltypes = {

{

id = "a",

lociList = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15},

phi = 0.45 ,

},

{

id = "b",

lociList = {},

phi = 0.45 ,

}

}

traits/T2.lua

id = "T2"

species = "S1"

--S7

-- Heritability of the trait

h2 = 0.833

50

--Locus weight for allelic effects

varLociWeights = 2

-- Selection Intensity

selIntParam =

{

-- Allowed values: userdata , value

-- If source == "userdata ": matrix sel_int.txt directly

filled by user

-- If source == "value ": a unique value is assigned to all

cells

source = "value",

omega = 50, -- neutral selection

}

-- Macro -environmental effect E

envEffParam =

{

-- Source of data , allowed values: userdata , value , param

-- If source == "userdata ": matrix e.txt directly filled by

user

-- If source == "value ": a unique value is assigned to all

cells , arg: E = number

-- If source == "param ": generation of a gradient according

to one dimension , arg: Ke = number

source = "value",

E = 2 ,

}

-- Optimal trait value Zopt

zoptParam =

{

-- Source of data , allowed values: userdata , value , param

-- If source == "userdata ": matrix zopt.txt directly filled

by user

-- If source == "value ": a unique value is assigned to all

cells , arg: zopt = number

-- If source == "param ": generation of a gradient according

to one dimension , args: opposed = boolean , Kzopt = number

source = "param",

opposed = false ,

Kzopt = 0.2 ,

}

-- Phenotypic plasticity

51

-- If non heritable phenotypic plasticity , Z = G + E + epsilon

(only loci of type a)

-- no GxE interaction , nhpp should be true

nhpp = false

-- Otherwise Z = a + bE + epsilon , two kinds of locus: a (

intercept of reaction norm) and b (slope)

-- reference environmental value Eref required

Eref = 0.1

ltypes = {

{

id = "a",

lociList = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30},

phi = 0.45 ,

},

{

id = "b",

lociList = {},

phi = 0.45 ,

}

}

52

References

[1] Lynch, M.; Walsh, B. Genetics and analysis of quantitative traits. Sunderland, MA:
Sinauer, 1998, Vol. 1, p. 4.

[2] Lande, R. 2009. Adaptation to an extraodinary environment by the evolution of pheno-
typic plasticity and genetic assimilation. Journal of evolutionary biology, 22(7), pp.1435-
1446.

[3] Turelli, M. (1984). Heritable genetic variation via mutation-selection balance: Lerch’s
zeta meets the abdominal bristle. Theoretical population biology, 25(2), 138-193.

[4] Reeve J.P. 2000. Predicting long term response to selection. Genet. Res. Gamb. 75:
83-94.

[5] Rousset, F. 2008. Genepop007: a complete reimplementation of the genepop software
for Windows and Linux. Molecular ecology resources, 8(1), 103-106.

[6] Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics.
Journal of heredity, 86(6), 485-486.

53

	Introduction
	Overview
	License
	Contact

	Getting started
	Prerequisites for installation
	Installation
	Running a simulation
	Compilation
	Input
	General structure
	Initialization modes
	Secondary files
	Syntax

	Output
	Raw and processed output
	Genotypes conversion

	Starting meta-population

	Model
	Frame of the model
	Phenotypic traits
	Genomes
	From genomes to traits: phenotypic and genetic subdivisions
	Heritability and allelic effects

	Inheritance
	Life cycle
	Natural selection
	Demography
	Recombination
	Gene flow
	Reproduction
	Mutation

	Landscapes
	Shape and dimensions
	Macro-environmental effect
	Natural selection

	Input
	Overall structure
	Files and variables

	Output
	Raw output
	Processed output
	Output conversion

	Appendix: configuration examples

